

Team 19

Advisors/Client: Goce Trajcevski

Team Members: Ayden Albertsen, Benjamin Hall, TJ Thielen, Ben
McClannahan

Team Email: sdmay24-19@iastate.edu

Team Website: https://sdmay24-19.sd.ece.iastate.edu/

Convoys in Atomic and

Molecular Trajectories

DESIGN DOCUMENT

Development Standards & Practices Used

IEEE/ISO/IEC 12207-2017 [1]

- Covers the common framework for the software development life cycle.

IEEE/ISO/IEC 90003-2018 [2]

- supply, development, operation and maintenance of computer software and related

support services.

ISO/IEC 27001 [3]

- Standard dealing with information security and practices that should be followed.

V. Phoha, "A standard for software documentation," in Computer, vol. 30, no. 10, pp. 97-

98, Oct. 1997, doi: 10.1109/2.625327. [4]

Summary of Requirements

• front-end UI that will enable:

o (i) users to select dataset;

o (ii) users to enter parameters;

o (iii) selection of algorithms;

o (iv) presentation of the results to the end-user;

• back-end that will store the molecular simulation datasets;

• "middleware" that will connect the front-end and back-end;

Executive Summary

Applicable Courses from Iowa State University Curriculum

S E 309 - Software Development Practices

COM S 363 - Introduction to Database Management Systems

COM S 327 - Advanced Programming Techniques

COM S 311 - Introduction to the Design and Analysis of Algorithms

COS S 319 - Construction of User Interfaces

New Skills/Knowledge acquired that was not taught in courses

• Background knowledge of flocks and convoys

• Innerworkings of a convoy detection and related algorithms

• 3D Graphing

• Data Visualization

Table of Contents

1 Team, Problem Statement, Requirements, and Engineering Standards 5

1.1 TEAM MEMBERS 5

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5

1.3 Skill Sets covered by the Team 5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 6

1.5 INITIAL PROJECT MANAGEMENT ROLES 6

1.6 Problem Statement 6

1.7 Requirements & Constraints 6

1.8 Engineering Standards 7

1.9 Intended Users and Uses 7

2 Project Plan 8

2.1 Task Decomposition 8

2.2 Project Management/Tracking Procedures 10

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 10

2.4 Project Timeline/Schedule 12

2.5 Risks And Risk Management/Mitigation 13

2.6 Personnel Effort Requirements 13

2.7 Other Resource Requirements 15

4 Design 16

4.1 Design Content 16

4.2 Design Complexity 16

4.3 Modern Engineering Tools 17

4.4 Design Context 17

4.5 Prior Work/Solutions 18

4.6 Design Decisions 18

4.7 Proposed Design 21

4.7.1 Design 0 (Initial Design) 21

Design Visual and Description 21

Functionality 22

4.7.2 Design 1 (Design Iteration) 22

Design Visual and Description 22

4.8 Technology Considerations 28

4.9 Design Analysis 29

5 Testing 29

5.1 Unit Testing 29

5.2 Interface Testing 29

5.3 Integration Testing 29

5.4 System Testing 30

5.5 Regression Testing 30

5.6 Acceptance Testing 30

5.7 Security Testing (if applicable) 30

5.8 Results 30

5.9 Criteria of Success 31

6 Implementation 31

7 Professionalism 31

7.1 Areas of Responsibility 31

7.2 Project Specific Professional Responsibility Areas 32

7.2 Most Applicable Professional Responsibility Area 33

8 Closing Material 33

8.1 Discussion 33

8.2 Conclusion 33

8.3 References 33

8.4 Team Contract 34

List of figures/tables/symbols/definitions

Flock (m, k, r)

- Given a set of n trajectories of entities in the plane, where each trajectory consists of τ

line segments, a flock in a time interval I, where the duration of I is at least k, consists of

at least m entities such that for every point in time within I there is a disk of radius r that

contains all the m entities (note that m ∈ N, k ∈ R and r>0 are given constants).

Convoy

- Given a set of trajectories O, an integer m, a distance value e, and a lifetime k, a convoy

query retrieves all groups of objects, i.e., convoys, each of which has at least m objects so

that these objects are so-called density–connected with respect to distance e during k

consecutive time points.

1 Team, Problem Statement, Requirements, and Engineering

Standards

1.1 TEAM MEMBERS

• Ayden Albertsen

• Benjamin Hall

• Ben McClannahan

• TJ Thielen

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

• Frontend development – Design and implement the UI

• Backend development – Design and implement the API

• Database design and management – Design and implement a database to store user

information

• 3D Data Visualization – Create an interactive way to view the data

1.3 SKILL SETS COVERED BY THE TEAM

• Frontend development – Ayden Albertsen, TJ Thielen, Benjamin Hall

• Backend development – Ayden Albertsen, TJ Thielen, Benjamin Hall

• Database management – Ayden Albertsen

• Visualization – Benjamin Hall

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Given the team’s experience working on Agile teams, it makes the most sense to

implement this management style on our project. Agile also allows for iterative

development which is great for developing a unique interface for customers that don’t

have strict requirements.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Client/Advisor Contact and Communication – Ben McClannahan

Git Management Leader – TJ Thielen

Frontend Leader – Ayden Albertsen

Backend Leader – Benjamin Hall

1.6 PROBLEM STATEMENT

To avoid high cost and to provide safety during exploratory stages, most manufacturers

of drugs run simulations of molecular interactions and analyze the movements of atoms

(in the context of multiple molecules that they belong to). The main purpose is to detect

whether certain events of interest occur – which, in turn, would mean that certain

properties of the drug under development are satisfied (or not). For this project's

purposes, our event of interest is the formation of a Hydrogen Bond (HB) during the

evolution of the chemical compound, and its persistence for a set amount of time. Our

project aims to develop a system that will allow users to analyze the simulation datasets

and: (1) detect the occurrence of such long-lasting HBs; (2) provide a detailed report to

the user; (3) provide a visual representation of the persistent HBs, if they occur within the

data set.

1.7 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

1. Take input from user regarding data set, algorithm, parameters. Parameters will change

depending on the algorithm selected. The system needs to ensure that the correct

parameters are provided.

2. Output the results of the algorithm so that the user can clearly see the clusters that

persist over time.

3. System needs to scale well with multiple users as well as larger datasets.

4. Computations need to be done on a server rather than the client’s machine due to high

intensity computations.

5. Validation needs to be done on user input parameters to ensure that the system does not

crash.

6. Runtime of the algorithms needs to be reasonably efficient (Algorithms provided)

7. Access to data should be fast and reliable.

Environmental:

- System should not make excessive/unnecessary computations and should be power

efficient.

Economic:

- System should not make excessive/unnecessary computations and should be power

efficient and should be extensible so that other datasets can be easily incorporated, and

other criteria be added.

- Guarantees of quality of output so that drug companies can clearly see the results as real-

world testing involves high costs and risks.

User Interface:

- UI needs to provide ease of navigation.

- It should be intuitive to understand the (purpose and use of) different components.

- It should provide input validation.

1.8 ENGINEERING STANDARDS

IEEE/ISO/IEC 12207-2017 [1]

- Covers the common framework for the software development life cycle.

IEEE/ISO/IEC 90003-2018 [2]

- supply, development, operation and maintenance of computer software and

related support services.

ISO/IEC 27001 [3]

- Standard dealing with information security and practices that should be followed.

V. Phoha, "A standard for software documentation," in Computer, vol. 30, no. 10, pp. 97-

98, Oct. 1997, doi: 10.1109/2.625327. [4]

1.9 INTENDED USERS AND USES

There are several classes of stakeholders that could potentially benefit from the results of

this project.

Chemical scientists and engineers:

- How will they use our project?

o Easily filter received data and visualize results in a way that is useful to

chemists.

o Display easy to understand information about properties regarding

reactions of chemical compounds to peers and others.

- What do they gain from our project?

o Speeds up the process of drug development.

o Reduces time and effort on evaluating the data our application does for

them.

Pharmaceutical Investors and Businesses:

- How will they use our project?

• Easy, high-level tool to understand drug interactions without needing to

understand the details.

- What do they gain from our program?

• Reduce the risks when investing in development for potential drugs.

Educators:

- How will they use our project?

• Safe environment for demonstrating properties of chemical reactions to

students.

2 Project Plan

2.1 TASK DECOMPOSITION

Figure 1. Task Decomposition

For our project we derived 5 major tasks that need to be completed in order to fulfill the

functional requirements that we defined in the previous section. From the above tasks

we have defined more specific subtasks that will need to be completed in order to fully

complete the tasks.

Task 1: Database

1a. Pick a database to store npz datasets (Could potentially use file system)

1b. Pick relational database to store user information and results

1c. Determine tables needed for relational database

1d. Create ER diagram for relational database

1e. Translate ER diagram to SQL statements

1f. Set up/deploy database server

Task 2: UI

2a. Design Prototype for UI (Figma)

2b. Choose UI framework (React, Angular)

2c. Determine list of detection algorithms and required parameters

2d. Project Setup

2e. Select Database/Algorithm/Parameters Page (Functional Requirement 1)

2f. Import Dataset Page

2g. Login/Create user Functionality

2h. Job Status Page

2i. View Results/Select Convoy to Visualize Page

2j. Connect UI to backend (Axios)

Task 3: Server/API

3a. Choose Backend Framework (Flask, Spring)

3b. Project Setup

3c. Obtain all algorithms being used for the project

3d. Endpoint to take in job parameters and start a convoy detection job

3e. Import Dataset Endpoint

3f. User Login/Creation Endpoints

3g. Retrieve Job Status Endpoint

3h. Retrieve results of convoy detection algorithm endpoint

Task 4: Convoy Visualization

4a. Discuss specific visualization needs with client

4b. Choose visualization framework (Plotly, VMD as failsafe)

4c. Create endpoint that produces a 3D visualization of a convoy

4d. Send convoy visualization to frontend

4f. Display an interactive visualization to the user in the UI

Task 5: Testing

5a. Ensure that all components of the project can communicate with each other and

produce the desired output

5b. Ensure that all component unit tests are correct.

5b. Ensure that all functional requirements are met.

2.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our group will be using an agile project management style. Our tasks/subtasks will be

broken down into 2 weeklong sprints (Roughly 8 sprints). The goal of our project is to

produce a user friendly and easy to use product which requires constant communication,

flexibility, and adaptability. By choosing the agile methodology we can iteratively

develop each of our subtasks and get meaningful feedback after each sprint which is

crucial when developing a customer focused product.

Our progress and tasks will mainly be tracked using GitLab issues and milestones. GitLab

allows issues to be assigned to specific group members and have wights assigned to

them ensuring a even workload distribution for our group members. Daily standups and

communication will mainly be done through Discord.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestone Metrics

Relational Database is designed, implemented,

and deployed (Task 1)
Database captures/maintains the required data

for the project.

Database response time: Less than 10

milliseconds for 95% of queries.

Transaction throughput: Handle up to 10

concurrent users without performance

degradation.

Method to store and retrieve element datasets

is implemented (Task 1)
Efficiency: Large datasets are stored efficiently

with a compression ratio of at least 30%

Data retrieval should be reasonably fast, and

dataset should take no longer than 1 minute to

be loaded into the computation system

Login/Register functions are implemented (Task

2)
Prospective users are able to register new

accounts and login with them.

Security: all users should have their passwords

and data encrypted.

Dataset/Algorithm/Parameter selection is

implemented (Task 2)
Ensures that all of functional requirement 1 is

met. Users can easily select the algorithm and

parameters for convoy detection in an intuitive

and easy to use way

Upload Dataset Functionality (Task 2/Task 3) System should be able datasets as large as 5GB.

Users should be able to drag and drop datasets

to upload them to the server

Upload speed should only be affected by

client’s internet speed.

UI component is able to communicate with

backend (Task 2)
Only authenticated users should be able to

interact with backend

Response time should be less than 100ms

Convoy Detection Algorithms are implemented

(Task 3)
Convoy algorithm runtimes should be the same

as described in journal articles.

Users should have a way of seeing the status of

the algorithms

All systems are able to work and communicate

with each other (Task 5)
Latency between communicating from one

system to another should be less than 100ms

Proper https encryption standards are used

when communicating over the internet

Figure 2. Milestones and Metrics Table

2.4 PROJECT TIMELINE/SCHEDULE

Figure 3a. Gantt chart for the Fall 2023 Semester sdmay-24-19 Gantt Chart.xlsx

Figure 3b. Gantt chart for the Spring 2024 Semester sdmay-24-19 Gantt Chart.xlsx

https://iowastate-my.sharepoint.com/:x:/g/personal/benhall_iastate_edu/EXZa4G3_9f9DgnlNiaZYsJoB4WeU-d-l9B9PNgs_9sJVUg
https://iowastate-my.sharepoint.com/:x:/g/personal/benhall_iastate_edu/EXZa4G3_9f9DgnlNiaZYsJoB4WeU-d-l9B9PNgs_9sJVUg

2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Task Risk Mitigation Probability

Task 1: Database Data becomes

compromised.
Follow ISO/IEC 27001

standards
0.1

Task 1: Database Data is deleted. Keep a backup of the

data so that it can’t be

deleted or become

unavailable

0.1

Task 2: UI Framework does not

meet our requirements
Define a backup

frontend framework in

case our first choice

does not work

0.2

Task 2: UI Unable to communicate

with backend
Fallback to a different

http request library
0.1

Task 4: Visualization Visualization

Framework unable to

handle the amount of

data

Reduce resolution of

data being displayed,

only show some time

slices, render elements

as simple dots.

0.8

Task 4: Visualization Visualization API

cannot handle several

connections and

requests

Implement queue

system for visualization

requests

0.3

Figure 4. Risk Decomposition Table

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Setup/Research

Hours
Implementation

Hours
Explanation

1a. Pick a database to store .npz

datasets (Could potentially use file

system)

3 1 There may only be a few

options available

1b. Pick relational database to store

user information and results
2 0 Will mostly likely use MySQL

but need to ensure that it

will meet our requirements.

1c. Determine tables needed for

relational database
5 0 Will take some time to figure

out what tables are needed

for the project

1d. Create ER diagram for relational

database
2 4 Some setup time to learn

Lucid Charts or some other

diagram tool

1e. Translate ER diagram to SQL

statements
2 4 Just some research and

testing for simple SQL

statements.

1f. Set up/deploy database server 1 4 Getting access to Iowa State

servers and setting up the

database on it.

2a. Design Prototype for UI (Figma) 2 10 Learn Figma if the team has

not learned it yet and create

program flow and design

themes.

2b. Choose UI framework (React,

Javascript)

1 0 Decide on which framework

would be best suited for our

team.

2c. Determine list of detection

algorithms and required

parameters

2 0 Research the algorithm to

determine all the parameters

needed from the user.

2d. Project Setup 0 1

2e. Select

Dataset/Algorithm/Parameters

Page (Functional Requirement 1)

6 12 Might have to pull available

datasets and algorithms

from the backend for this.

2f. Import Dataset Page 6 12 Developing an upload

function with security

concerns and writing tests in

conjunction with the

backend to test

functionality.

2g. Login/Create user Functionality 6 12 Developing a user account

system with security

concerns in mind. Writing

tests to confirm security and

functionality.

2h. Job Status Page 8 10

2i. View Results/Select Convoy to

Visualize Page

12 16 Might take some research

with the visualization aspect

as the output is an HTML

file.

2j. Connect UI to backend (Axios) 12 24 Integration with backend for

user and dataset storage.

Will need to test login,

register, upload, and

retrieval functions.

3a. Choose Backend Framework

(Flask, Spring)

2 0 Research what framework

meets our requirements.

3b. Project Setup 1 0 Setting up the project in

GitLab.

3c. Obtain all algorithms being

used for the project

1 0 Receive all algorithms from

client.

3d. Endpoint to take in job

parameters and start a convoy

detection job

9 19 Will also have to develop or

research queue framework

for jobs.

3e. Import Dataset Endpoint 9 18 Requires integration with the

user database and API.

3f. User Login/Creation Endpoints 9 18 Integration of User API and

database.

3g. Retrieve Job Status Endpoint 6 12 Research the best way to

implement and retrieve job

status.

3h. Retrieve results of convoy

detection algorithm endpoint

4 8 Requires integration testing

from visualization API and

frontend.

4a. Discuss specific visualization

needs with client

4 0 Meeting with client.

4b. Choose visualization framework

(Plotly, VMD as failsafe)

4 0 Research and decide which

framework fits our client’s

needs.

4c. Create endpoint that produces a

3D visualization of a convoy

9 18 Need to optimize and refine

usage of visualization

library.

4d. Send convoy visualization to

Frontend

2 4 Need to research ways to

optimally send data securely

and efficiently.

4f. Display an interactive

visualization to the user in the UI

9 18 Researching and designing

an elegant way to display

the results of the algorithm.

5a. Ensure that all components of

the project are able to

communicate with each other and

produce the desired output

9 18 Writing and running

integration tests.

5b. Ensure that all functional

requirements are met

9 18 Comprehensive testing and

client feedback.

Figure 5. Personnel Effort Breakdown Table

2.7 OTHER RESOURCE REQUIREMENTS

Algorithms and datasets will need to be obtained from the clients. We will also need to

obtain a server to host our various project systems.

4 Design

4.1 DESIGN CONTENT

Our design attempts to address the needs of the client by creating two fundamental

systems; (a) a frontend that provides the UI/UX to the user as well as display the

rendering of the convoy displayed to the user, and (b) a backend that handles data

access, computation, and visualization rendering.

4.2 Design Complexity

The design consists of multiple components/subsystems that each utilize distinct

scientific, mathematical, or engineering principles.   

Frontend

1. Authentication/Authorization

a. Users need to view only data assigned to them.

b. Users need to log in to access their data

2. UI/UX

a. Database, algorithm, parameter selection

b. View Job Status

c. View Results

3. Visualization of convoys

a. Interactive

b. 3D

Backend

4. Data Access and Storage

a. Upload and retrieve stored datasets in the database.

b. Load datasets into algorithm parameters.

5. Job Broker

a. Start job on API request and return Job Identifier.

b. Portion out computer resources for algorithms.

c. Retrieve and return status of Job from an identifier.

6. Convoy Computation/Processing

a. Load large datasets into algorithm.

b. Run a computationally difficult algorithm while several requests are going on.

c. Return processed data to visualization.

7. Visualization Rendering

a. Take in the processed data and render the dataset to an HTML format for easy

and dynamic viewing by the user.

b. Reduce size for output.

c. Reduce resolution of data.

4.3 Modern Engineering Tools

1. Backend

Flask [6] provides a stable but updated library for developing and hosting an API

through Python.

Celery [10] is an asynchronous job queue library that will be used for starting and

retrieving job status. This tool will provide the most flexible and fast response to users. It

provides interactivity with Flask which makes it perfect for this use case.

Redis [11] is an in-memory database which can be used as a broker for job statuses for

Celery so clients can dynamically request the status of the job queued through the API.

Docker [12] allows for quick deployment of the multiple backend scripts like Flask and

Redis, making it a more deployable package.

Plotly [7] provides an expansive visualization library which can output a HTML rendering

of the data after processing, which can be returned by the API.

MySQL [13] provides a traditional database structure perfect for storing user data and

the stored data sets uploaded by the user.

2. Frontend

React [5] is the largest, most popular frontend library used to develop fast and dynamic

web pages. It will be used to dynamically update web pages with information retrieved

from our backend.

4.4 DESIGN CONTEXT

Our project is designed to be used as an aid for drug manufacturers to detect how

certain substrates and drug molecules may interact over time as well as detect events of

interest such as convoys. Because of this, both chemists and non-technical industry

professionals need to be able to use and understand our software.

Area Description Examples

Public health,

safety, and

welfare

How does your project affect the general

well-being of various stakeholder groups?

These groups may be direct users or may

be indirectly affected (e.g., solution is

implemented in their communities)

Aid in providing a comprehensive

tool to automate convoy detection

and allow chemists to develop

potentially lifesaving drugs faster.

Global, cultural,

and social
How well does your project reflect the

values, practices, and aims of the cultural

Chemists’ workload will be

lightened by removing the tedious

groups it affects? Groups may include but

are not limited to specific communities,

nations, professions, workplaces, and

ethnic cultures.

repetitive task of detecting convoys

by hand enabling a more effective

exchange of findings and

processes.

Environmental What environmental impact might your

project have? This can include indirect

effects, such as deforestation or

unsustainable practices related to

materials manufacture or procurement.

The servers that run the convoy

detection algorithms will use

energy, however, our system will

enable more efficient separation of

potential reactions among atoms

without sacrificing the

effectiveness.

Economic What economic impact might your project

have? This can include the financial

viability of your product within your team

or company, cost to consumers, or broader

economic effects on communities, markets,

nations, and other groups.

Drug research can be extremely

costly and have risks involved. Our

system will mitigate some of these

costs by using simulated data and

detecting convoys with efficient

algorithms. This can make for faster

drug research as well as quicker

time to market.

Figure 6. Design Considerations Table

4.5 Prior Work/Solutions

There are no comprehensive systems that provide convoy detection and visualization

using a cohesive user interface. There has been prior work done with studying molecular

flocks [9l] and convoys [8]. The downside of these two studies is that they neglect to

consider tolerance gaps in convoy detection which is still interesting to drug

manufactures. There also exists software that can visualize molecular trajectories but

none that work in conjunction with a convoy detection system.

4.6 DESIGN DECISIONS

Backend Framework

Defined Criteria

- Needs to be able to work with the data and algorithms provided by the client.

- Needs to be able to scale with multiple users.

- Needs authentication support.

- Needs to be able to communicate with frontend using HTTP

- Support for rendering visualizations

Given the criteria we narrowed down our options to two different frameworks:

- Java Spring

• Group Familiarity/Experience

https://dl.acm.org/doi/10.1145/1183471.1183479
https://dl.acm.org/doi/10.14778/1453856.1453971

• Fast

• Authentication Support

• Testing Support / Dependency Injection

• Good Documentation

• Bloated Codebase

• Not compatible with given datasets

- Python Flask
• Older framework

• Little group experience

• Compatible with given datasets and algorithms

• Performant

• Lightweight

• Can work with many visualization and job queue frameworks.

After analysis of our two options, we have decided to go with Flask to create our

backend. Its compatibility with the given datasets being its biggest draw. It will also give

the group an opportunity to learn a new framework and for some of us a new language.

Though this will come at the cost of added time as members may have to do more initial

research before completing their tasks. Python also has a larger number of

graphing/visualization framework available which also lead us to choose Flask.

Frontend Framework

Defined Criteria

- Needs to be able to give a good user experience.

- Interface with our visualization framework to display information

Given the criteria we narrowed down our options to two different frameworks:

- React

• Most popular frontend framework

• Group Familiarity

• Flexible

• Larger community

• Larger file size

- Vue

• Second most popular frontend framework

• Smaller file sizes

• Better for simplicity

After analysis of our two options, we have decided to go with React to create our

frontend. Of all our members, we have the most experience with React. Additionally, it

has great community support as it is the most popular frontend framework that

developers use.

- Visualization Framework

• Display convoys through various time periods

• Output multiple convoys

• Highlight hydrogen bonds within convoys.

• Output results to our frontend

• Fast and efficient

Given the criteria we narrowed down our options to two different frameworks:

- VMD

• External application

• Unknown API

• Suggested by client

• Built for modeling molecules

• Built-in scripting

• Lacks interactivity

- Plotly

• Python library

• Interactive

• Flexible

• May lack complexity and tooling for molecule modeling.

After analysis of our two options, we have decided to go with Plotly to create our

visualization framework. We concluded that VMD would require too much work to

interact with our frontend and it would be better to use a more flexible tool like Plotly

over one tool designed for molecule modeling. Plotly being a Python library also allows

for simplicity without backend framework being developed in Python as well.

4.7 PROPOSED DESIGN

4.7.1 Design 0 (Initial Design)

Design Visual and Description

Figure 7. Design 0 Diagram

This project can be broken down into two main parts: the frontend, and the backend.

The frontend will encompass parameter selection, the API service, the Results, and the

Visualization. The backend will contain the Flask API, the Convoy Job Queue, the

Visualization Render Queue, and communicate with the database.

The process will start on the frontend, where a user is able to upload a dataset for the

convoy detection algorithms to run on. This will go through the API Service to

communicate with the Flasks API, which will then upload that data to the database. After

this is done, the user can use the Parameter Selection component to determine the

specifics of how the convoy detection algorithm will work. It will pass that information to

the API service, which will communicate with the Flask API. The Flask API will send this

information to the Convoy Job Queue. This will execute the algorithm needed to detect

convoys and return the results to the API. Next, it will send these results to the

Visualization Render Queue. This will create a visualization using Plotly to display

information about the convoys. Finally, the Flask API will send back this visualization to

the API Service, which will send this information to the frontend for the user to view.

Components in relation to requirements:

Frontend

- Parameter Selection

• This helps to satisfy the requirement of taking input from the user including the

dataset, parameters, and algorithm. It also helps to ensure the parameters are

valid to prevent crashing.

- API Service

• This is a necessary component because it handles the communication between

the data/parameters and the execution of the algorithms.

- Results

• This component is needed to process the results being returned from the

backend, necessary for generating the visualization on the frontend.

- Visualization

• This helps to meet the requirement of displaying a visualization for the user to

view on the frontend.

Backend

- Flask API

• This is a necessary part of the communication between the frontend and

backend, allowing for the parameters and dataset to be properly used.

- Convoy Job Queue

• This component satisfies the requirement of executing the algorithms on a

remote server.

- Visualization Render Queue

• This component meets the requirement of creating the visualization so it can

eventually be outputted on the frontend for the users to view.

- Database

• This enables the program to access the data both quickly and reliably.

Functionality

This design is intended to operate in the real world by first allowing chemists who need

to view the formation of convoys and hydrogen bonds between molecules to upload

their data to the database. Next, they can select the necessary parameters and algorithm

to execute. Both this and the visualization of the results will be done remotely and sent

back to the frontend for the users to view. This process will meet the requirements as

specified above.

4.7.2 Design 1 (Design Iteration)

Design Visual and Description

In this design iteration we expanded on the frontend and backend systems. For the

frontend we completed a UI prototype using Figma. This prototype includes detailed

versions of the parameter selection, results, and visualization sections in our initial

design. It also includes implementations of pages outlined in our task decomposition

sections.

Figure 8. Frontend Login Page

Figure 9. Frontend Dashboard Page

Figure 10. New Job Page

Figure 11. New Job Page Cont.

Figure 12. Datasets Page

Figure 13. Settings Page

Figure 14. Data Visualization

For the backend we created a more detailed version of our design below. Here, the

client/frontend interacts with Flask, which itself communicates with a MySQL Database

through uploading data sets, authenticating the user, and allowing the user to log in

and/or register. When Flask starts a job, it hands things over to Celery. Celery stores the

job’s ID and job status inside a Redis Database, and then sends the job off to the

appropriate algorithm, which retrieved the specified data set from the MySQL database.

Once the algorithm is finished, it uses Plotly to visualize the data and stores the html file

that is created back into Celery, returning that to Flask, allowing the user to view

previous and current jobs.

Figure 15. Data Visualization

For our visualization we put together a prototype of our visualization software that we

created using the Plotly library that we discussed in previous sections. This protype was

created using example data that was sent to us by our client and would be a typical use

case scenario.

Figure 16. Data Visualization Prototype

4.8 TECHNOLOGY CONSIDERATIONS

When making the design decision on the backend language, we analyzed the strengths

and weaknesses of both Java Spring and Python Flask. We ended up landing on Flask

due to its good performance, light weight, and ability to work with many visualizations

and asynchronous jobs. There were some disadvantages including being an older

framework, and a lack of Flask experience within our group. We could have gone for Java

Spring, which would have been easier to get started with due to more group experience,

however we determined the advantages of Flask outweighed those of Spring.

Another decision that was made was with our visualization technique. It was initially

suggested that we try to use VMD, but after further research we found a much better

solution – plot.ly. Plot.ly is a python library that allows you to create a visualization

similar to what is possible with VMD, however it is lighter and works really well with our

current design, so we opted to choose plot.ly.

Finally, we had the opportunity to choose either React or Vue for the frontend

framework. They had very similar strengths and weaknesses but given that our group has

more experience in React, we decided to use React.

4.9 DESIGN ANALYSIS

Our proposed design from 4.7 ended up working. It succeeded due to our careful

iteration over each of our design decisions. While our design works, we could potentially

make it clearer for those reading over this document and trying to interpret our solutions

through our design diagram. For example, we have a much more detailed design

diagram of the backend in 4.7.2, and more information in that could be added into our

initial design for more clarity.

5 Testing

5.1 UNIT TESTING

Frontend

- Components

- Forms

- Buttons

- Functions

- Methods

Backend

- API endpoints

o Job Queue endpoints

o User function endpoints

- Functions

o Algorithm functions

- Methods

For the frontend we plan to use jest and React’s built in testing library to test all our

essential react components, primarily to ensure that form and field validation is working

correctly. For the backend user and visualization APIs, we will need to use a third-party

library called PyTest to unit test our backend.

5.2 INTERFACE TESTING

The main interface in our design is our React UI which consists of multiple components

rendered together. React fortunately has built in test utilities that work great for interface

testing. Our backend also has the API interface that allows the frontend to communicate

with the backend. Again, we should be able to use PyTest and data dependency injection

to ensure that data is being processed and returned in the correct format.

5.3 INTEGRATION TESTING

There are many integration paths that will need to be tested in our application such as

user authentication, data retrieval and data transformation, and state management. All

these examples require “round trip” data paths that flow through the entire system. A

great tool to test these paths is Cypress as we can ensure that all components in the

system are interacting correctly with one another.

5.4 SYSTEM TESTING

System testing will be carried out by modeling pre-calculated models to check that the

system works. The system testing will use unit tests from the algorithm and visualization

API and ensure that the transfer from the backend to frontend integration is working

properly. It will model basic user interactions using UI tests. The entire process will be

executed to ensure that the software meets the basic functional requirements provided

by the Client. This will all be executed by the CI/CD pipeline process on GitLab and will

report data on failures and successes.

5.5 REGRESSION TESTING

Regression testing will be performed throughout the CI/CD pipeline where builds will be

compiled, tested, and eventually published to ensure that all parts are working together.

We will be able to see points of failure in the system when all the parts are integrated

together as a part of the CI/CD pipeline. More specifically, we will be using the GitLab

CI/CD pipeline to carry this out.

5.6 ACCEPTANCE TESTING

Acceptable testing will be performed by both unit testing and client confirmation. The

unit tests will test the algorithms and parameters to ensure that it produces the expected

output. The clients will analyze and review the output of the program to ensure

compliance with their functional requirements and accuracy.

5.7 SECURITY TESTING (IF APPLICABLE)

In our design we are going to be prioritizing testing the functionality of the system as we

have a limited time to implement and test. As such, if time permits, we will ensure that

no major security concerns exist in the system. We could also use source code analysis

tools to scan for any known vulnerabilities in our system. Mainly we want to ensure that

our login system does not let unauthorized users into the system. One in the system we

also want to ensure that the current user can only access data that belongs to them/their

organization.

5.8 RESULTS

As with any software product testing can help with various aspects of concern such as:

- Identifying and fixing bugs

- Verifying functionality

- Validating requirements

- Ensuring components can communicate with each other.

Testing is a vital aspect of our project plan which is why we have budgeted time in our

project plan to implement the described tests. Actual results will be provided once the

system is implemented, and tests are written.

5.9 CRITERIA OF SUCCESS

The criteria for success of our testing will be determined by the functionality of the

compiled project.

6 Implementation

- Ensure that all team members have appropriate software and applications required to

start the implementation of the project at the start of the semester.

- Ensure that any data or servers that the team needs access to are working properly and

can be accessed remotely so that the team may work with them as needed.

- Ensure that the Continuous Integration and Development pipeline is set up as needed to

ensure that dynamic development and testing can be performed at the start of the

semester.

- Implement features as described in figure 5

7 Professionalism

This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone

Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of

Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Area of responsibility Definition NSPE Version Description Performance

Work competence Perform work of high

quality, integrity, timeliness,

and professional

competence.

Perform services only in

Areas of their

competence; avoid

deceptive acts.

Product - software engineers shall

ensure that their products and

related modifications meet the

highest professional standards

possible.

High

Financial responsibility Deliver products and

services of realizable value

and at reasonable costs.

Act for each employer

or client as faithful

agents or trustees.

Management - Software

engineering managers and leaders

shall subscribe to and promote an

ethical approach to delivering

products at a reasonable cost

N/A

Communication

honesty

Report work truthfully,

without deception, and

understandably to

stakeholders.

Issue public statements

only in an objective and

truthful manner; Avoid

deceptive acts.

Judgment - Software engineers

shall maintain integrity and

independence in their professional

judgment.

High

Health, safety,

wellbeing

Minimize risks to safety,

health, and well-being of

stakeholders.

Hold paramount the

safety, health, and

welfare of the public.

Public - Software engineers shall

act consistently with the public’s

safety.

N/A

Property ownership Respect property, ideas,

and information of clients

and others.

Act for each employer

or client as faithful

agents

Or trustees

Client and Employer - Software

engineers shall act in a manner

that is in the best interests of their

client and employer consistent

with the public interest

Medium

Sustainability

Protect environment and

natural resources locally

and globally

 Public - Software engineers shall

create products that do not

unnecessarily impact the

environment or use unnecessary

resources

Medium

Figure 17. Areas of Responsibility

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Work competence (High)

- This area of responsibility directly applies to our project and probably applies to every

project. Our goal as a team is to create a system that meets our client’s needs and

addresses each requirement expressed by the client.

Financial responsibility (N/A)

- Because this project is for a student assignment, and we are not commercializing it this

area of responsibility does not fall within our project’s context.

Communication honesty (High)

- As the implementation of our project requires constant communication with our

clients/advisors we need to ensure that we are reporting work accurately and consistently

Health, safety, wellbeing (N/A)

- This project doesn’t necessarily have direct impact on the safety and wellbeing of

stakeholders.

Property ownership (Medium)

- Algorithms are provided and created by the client, so acknowledging this may be

important to the overall project.

Sustainability (Medium)

- Our project has the potential to use a lot of energy as the algorithms that we are

implementing can be very computationally intensive.

7.2 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Most of the responsibility areas partially relate to our project, however work competence is one

that holds the most importance in our project. We desire to deliver a high-quality project that not

only meets the client’s expectations, but also exceeds it. This includes finishing tasks in a timely

and professional manner to uphold the integrity of the team and the project.

8 Closing Material

8.1 DISCUSSION

The main result of the product is the design specifications and content. Our group has

communicated and worked alongside the client to create a design that fits their requirements and

vision for a tool to make modeling convoys easier. While implementation has yet to be made,

small experiments in implementation of core features have been tested to be successful.

8.2 CONCLUSION

So far, we have completed all the necessary prerequisites including determining which teammate

will take on which roles, how long each task is expected to take, the technique that will be used in

implementing each feature, how each feature will be tested, and what the ideal frontend/backend

will look like. Our main goal going into this was to establish an outline for anything that needs to

be done so all that remains is writing the code. All design decisions should be made beforehand.

We were temporarily constrained from achieving this goal due to our inexperience with detecting

convoys and lack of clarity on the algorithms, but through communication and hard work, we

were able to complete everything we needed.

8.3 REFERENCES

[1] IEEE SA, “IEEE Standards Association,” IEEE Standards Association.

https://standards.ieee.org/ieee/12207/5672/

[2] IEEE SA, “IEEE Standards Association,” IEEE Standards Association.

https://standards.ieee.org/ieee/90003/7197/

[3] “ISO/IEC 27001:2022,” ISO, Feb. 02, 2023. https://www.iso.org/standard/27001

[4] “A standard for software documentation,” IEEE Journals & Magazine | IEEE Xplore, Oct. 01,

1997. https://ieeexplore.ieee.org/document/625327

[5] “React.” https://react.dev/

[6] “Welcome to Flask — Flask Documentation (3.0.X).” https://flask.palletsprojects.com/en/3.0.x/

[7] “Plotly.” https://plotly.com/python/

[8] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of convoys in trajectory

databases,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 1068–1080, Aug. 2008, doi:

10.14778/1453856.1453971.

[9] J. Gudmundsson and M. Van Kreveld, “Computing longest duration flocks in trajectory data,”

Nov. 2006, doi: 10.1145/1183471.1183479.

[10] “Introduction to Celery — Celery 5.3.6 documentation.”

https://docs.celeryq.dev/en/stable/getting-started/introduction.html

[11] “Redis,” Redis. https://redis.io/

[12] “Docker: Accelerated Container Application Development,” Docker, Oct. 18, 2023.

https://www.docker.com/

[13] “MySQL.” https://www.mysql.com/

8.4 TEAM CONTRACT

Team Name sdmay24-19

Team Members:

1) Ayden Albertsen 2) Benjamin Hall

3) Ben McClannahan 4) TJ Thielen

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

a. Virtual - Thursday @ 3:30

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-

mail, phone, app, face-to-face):

a. Email/Discord

3. Decision-making policy (e.g., consensus, majority vote):

a. Majority Vote

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived):

a. Git Issues

b. Google Docs

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

a. Each member is expected to attend all meetings unless extenuating

circumstances are applicable.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

a. Each team member will commit to a similar amount of development effort of git

issues as voted on by the team.

b. Each member of the team is expected to contribute to written assignments on an

even basis.

c. Once a deadline has been decided to complete a task, the team member must

complete it by the decided deadline.

3. Expected level of communication with other team members:

a. Each team member of the team is expected to communicate regularly through

discord and email about progress, blockers, or any other relevant information

about completion of their assigned work

4. Expected level of commitment to team decisions and tasks:

a. Each team member is expected to commit to a similar effort of work

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.):

a. Team Leader?

b. Frontend Leader?

c. Backend Leader?

i. Benjamin Hall

d. Client/Advisor Communication

i. Ayden Albertsen

2. Strategies for supporting and guiding the work of all team members:

a. Team members are encouraged to discuss tasks with other team members as well

as reach out to the team TA if they need assistance with their work.

3. Strategies for recognizing the contributions of all team members:

a. Each task should be logged and effort rated in GitLab, even non-development

work.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the

team.

a. Ayden Albertsen - 2+ Years of internship experience working as a full stack

developer for an online banking system using React frontend and Spring

backend. Experience working on an AGILE development team, attending AGILE

ceremonies, completing and writing user stories.

b. Benjamin Hall - No formal experience directly in software development, but

Cybersecurity Internships that required knowledge of Python, Javascript, and

AGILE development. I’ve worked on software projects for about 7 years now,

starting with year-long club projects in high school.

c. Ben McClannahan - Several years experience working with Python, Java, and C++.

Have been working as an intern at Collins Aerospace.

d. TJ Thielen - Internship at Source Allies doing software development for the past 2

summers that required using typescript and python, with a React frontend.

Practiced AGILE development including writing stories, doing TDD, and attending

and leading AGILE ceremonies.

2. Strategies for encouraging and support contributions and ideas from all team members:

a. Team members are expected to take on tasks that they may not be initially

comfortable with, in these cases it's encouraged to reach out to other team

members, TAs, or advisors to help them understand and complete the task.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a

team member inform the team that the team environment is obstructing their

opportunity or ability to contribute?)

a. In the case of a disagreement, collaboration issues, or inclusion issues, the team

will first try and resolve the problem internally via the team leader. If the team

leader is unable to resolve the conflict, issues will then be brought up to the TA.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

a. Complete the design document and get an A grade

b. Learn new technologies

c. Exposure to working on a team

2. Strategies for planning and assigning individual and team work:

a. In team meetings, work will be divided into git issues, each issue will be assigned

an effort value, team members will be assigned a similar total effort of stories.

3. Strategies for keeping on task:

a. In team meetings, each member will give a progress update on the status of their

issues and when they expect to complete them by. Progress of each issue will be

tracked in GitLab.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

a. Any infractions to this contract will be immediately brought to the attention of TA

or instructor if applicable.

2. What will your team do if the infractions continue?

a. If infractions continue, the team member will receive poor performance reviews

and the TA/instructor will be notified of the team member's continued

infractions.

a) I participated in formulating the standards, roles, and procedures as stated in this

contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Ayden Albertsen DATE 9/5/23

2) Benjamin Hall DATE 9/7/23

3) Ben McClannahan DATE 9/8/23

4) TJ Thielen DATE 9/10/23

	1 Team, Problem Statement, Requirements, and Engineering Standards
	1.1 Team Members
	1.2 Required Skill Sets for Your Project
	1.3 Skill Sets covered by the Team
	1.4 Project Management Style Adopted by the team
	1.5 Initial Project Management Roles
	1.6 Problem Statement
	1.7 Requirements & Constraints
	1.8 Engineering Standards
	1.9 Intended Users and Uses

	2 Project Plan
	2.1 Task Decomposition
	2.2 Project Management/Tracking Procedures
	2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	2.4 Project Timeline/Schedule
	2.5 Risks And Risk Management/Mitigation
	2.6 Personnel Effort Requirements
	2.7 Other Resource Requirements

	4 Design
	4.1 Design Content
	4.2 Design Complexity
	4.3 Modern Engineering Tools

	4.4 Design Context
	4.5 Prior Work/Solutions

	4.6 Design Decisions
	4.7 Proposed Design
	4.7.1 Design 0 (Initial Design)
	Design Visual and Description
	Functionality
	4.7.2 Design 1 (Design Iteration)
	Design Visual and Description

	4.8 Technology Considerations
	4.9 Design Analysis

	5 Testing
	5.1 Unit Testing
	5.2 Interface Testing
	5.3 Integration Testing
	5.4 System Testing
	5.5 Regression Testing
	5.6 Acceptance Testing
	5.7 Security Testing (if applicable)
	5.8 Results
	5.9 Criteria of Success

	6 Implementation
	7 Professionalism
	7.1 Areas of Responsibility
	7.2 Project Specific Professional Responsibility Areas
	7.2 Most Applicable Professional Responsibility Area

	8 Closing Material
	8.1 Discussion
	8.2 Conclusion
	8.3 References
	8.4 Team Contract

